3.2.12 \(\int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx\) [112]

3.2.12.1 Optimal result
3.2.12.2 Mathematica [A] (verified)
3.2.12.3 Rubi [A] (verified)
3.2.12.4 Maple [B] (verified)
3.2.12.5 Fricas [B] (verification not implemented)
3.2.12.6 Sympy [F]
3.2.12.7 Maxima [A] (verification not implemented)
3.2.12.8 Giac [F]
3.2.12.9 Mupad [B] (verification not implemented)

3.2.12.1 Optimal result

Integrand size = 23, antiderivative size = 50 \[ \int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {(a+b) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b^{3/2} d}-\frac {\tanh (c+d x)}{b d} \]

output
(a+b)*arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))/b^(3/2)/d/a^(1/2)-tanh(d*x+c)/b/ 
d
 
3.2.12.2 Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 50, normalized size of antiderivative = 1.00 \[ \int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {(a+b) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b^{3/2} d}-\frac {\tanh (c+d x)}{b d} \]

input
Integrate[Sech[c + d*x]^4/(a + b*Tanh[c + d*x]^2),x]
 
output
((a + b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*b^(3/2)*d) - Ta 
nh[c + d*x]/(b*d)
 
3.2.12.3 Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.96, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4158, 299, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (i c+i d x)^4}{a-b \tan (i c+i d x)^2}dx\)

\(\Big \downarrow \) 4158

\(\displaystyle \frac {\int \frac {1-\tanh ^2(c+d x)}{b \tanh ^2(c+d x)+a}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 299

\(\displaystyle \frac {\frac {(a+b) \int \frac {1}{b \tanh ^2(c+d x)+a}d\tanh (c+d x)}{b}-\frac {\tanh (c+d x)}{b}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {(a+b) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b^{3/2}}-\frac {\tanh (c+d x)}{b}}{d}\)

input
Int[Sech[c + d*x]^4/(a + b*Tanh[c + d*x]^2),x]
 
output
(((a + b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*b^(3/2)) - Tan 
h[c + d*x]/b)/d
 

3.2.12.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 299
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[d*x 
*((a + b*x^2)^(p + 1)/(b*(2*p + 3))), x] - Simp[(a*d - b*c*(2*p + 3))/(b*(2 
*p + 3))   Int[(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && NeQ[2*p + 3, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4158
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_ 
)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/(c^(m - 1)*f)   Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)^n)^ 
p, x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && I 
ntegerQ[m/2] && (IntegersQ[n, p] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] 
 || EqQ[n^2, 16])
 
3.2.12.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(196\) vs. \(2(42)=84\).

Time = 21.08 (sec) , antiderivative size = 197, normalized size of antiderivative = 3.94

method result size
derivativedivides \(\frac {\frac {2 a \left (a +b \right ) \left (-\frac {\left (a -\sqrt {\left (a +b \right ) b}+b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}+\frac {\left (-a -\sqrt {\left (a +b \right ) b}-b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{b}-\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right )}}{d}\) \(197\)
default \(\frac {\frac {2 a \left (a +b \right ) \left (-\frac {\left (a -\sqrt {\left (a +b \right ) b}+b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}+\frac {\left (-a -\sqrt {\left (a +b \right ) b}-b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{b}-\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right )}}{d}\) \(197\)
risch \(\frac {2}{b d \left ({\mathrm e}^{2 d x +2 c}+1\right )}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}-2 a b}{\left (a +b \right ) \sqrt {-a b}}\right ) a}{2 \sqrt {-a b}\, d b}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}-2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{2 \sqrt {-a b}\, d}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}+2 a b}{\left (a +b \right ) \sqrt {-a b}}\right ) a}{2 \sqrt {-a b}\, d b}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}+2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{2 \sqrt {-a b}\, d}\) \(255\)

input
int(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2),x,method=_RETURNVERBOSE)
 
output
1/d*(2/b*a*(a+b)*(-1/2*(a-((a+b)*b)^(1/2)+b)/a/((a+b)*b)^(1/2)/((2*((a+b)* 
b)^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*((a+b)*b)^(1/2) 
-a-2*b)*a)^(1/2))+1/2*(-a-((a+b)*b)^(1/2)-b)/a/((a+b)*b)^(1/2)/((2*((a+b)* 
b)^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*((a+b)*b)^(1/2)+ 
a+2*b)*a)^(1/2)))-2/b*tanh(1/2*d*x+1/2*c)/(tanh(1/2*d*x+1/2*c)^2+1))
 
3.2.12.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 172 vs. \(2 (42) = 84\).

Time = 0.28 (sec) , antiderivative size = 649, normalized size of antiderivative = 12.98 \[ \int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\left [-\frac {{\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a + b\right )} \sqrt {-a b} \log \left (\frac {{\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a^{2} + 2 \, a b + b^{2}\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a^{2} - b^{2}\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{2} + a^{2} - b^{2}\right )} \sinh \left (d x + c\right )^{2} + a^{2} - 6 \, a b + b^{2} + 4 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{3} + {\left (a^{2} - b^{2}\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) - 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a - b\right )} \sqrt {-a b}}{{\left (a + b\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a + b\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a - b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} + a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{3} + {\left (a - b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a + b}\right ) - 4 \, a b}{2 \, {\left (a b^{2} d \cosh \left (d x + c\right )^{2} + 2 \, a b^{2} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a b^{2} d \sinh \left (d x + c\right )^{2} + a b^{2} d\right )}}, \frac {{\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a + b\right )} \sqrt {a b} \arctan \left (\frac {{\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a - b\right )} \sqrt {a b}}{2 \, a b}\right ) + 2 \, a b}{a b^{2} d \cosh \left (d x + c\right )^{2} + 2 \, a b^{2} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a b^{2} d \sinh \left (d x + c\right )^{2} + a b^{2} d}\right ] \]

input
integrate(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="fricas")
 
output
[-1/2*(((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + 
(a + b)*sinh(d*x + c)^2 + a + b)*sqrt(-a*b)*log(((a^2 + 2*a*b + b^2)*cosh( 
d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 + 
2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 
 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^2 - 6*a*b + 
 b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*cosh(d*x + c)) 
*sinh(d*x + c) - 4*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh 
(d*x + c) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(-a*b))/((a + b)*cosh(d*x 
 + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^ 
4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh 
(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x 
 + c) + a + b)) - 4*a*b)/(a*b^2*d*cosh(d*x + c)^2 + 2*a*b^2*d*cosh(d*x + c 
)*sinh(d*x + c) + a*b^2*d*sinh(d*x + c)^2 + a*b^2*d), (((a + b)*cosh(d*x + 
 c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + 
a + b)*sqrt(a*b)*arctan(1/2*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x 
+ c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(a*b)/(a*b)) + 2 
*a*b)/(a*b^2*d*cosh(d*x + c)^2 + 2*a*b^2*d*cosh(d*x + c)*sinh(d*x + c) + a 
*b^2*d*sinh(d*x + c)^2 + a*b^2*d)]
 
3.2.12.6 Sympy [F]

\[ \int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int \frac {\operatorname {sech}^{4}{\left (c + d x \right )}}{a + b \tanh ^{2}{\left (c + d x \right )}}\, dx \]

input
integrate(sech(d*x+c)**4/(a+b*tanh(d*x+c)**2),x)
 
output
Integral(sech(c + d*x)**4/(a + b*tanh(c + d*x)**2), x)
 
3.2.12.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.26 \[ \int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=-\frac {{\left (a + b\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{\sqrt {a b} b d} - \frac {2}{{\left (b e^{\left (-2 \, d x - 2 \, c\right )} + b\right )} d} \]

input
integrate(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="maxima")
 
output
-(a + b)*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/(sqrt(a* 
b)*b*d) - 2/((b*e^(-2*d*x - 2*c) + b)*d)
 
3.2.12.8 Giac [F]

\[ \int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int { \frac {\operatorname {sech}\left (d x + c\right )^{4}}{b \tanh \left (d x + c\right )^{2} + a} \,d x } \]

input
integrate(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="giac")
 
output
sage0*x
 
3.2.12.9 Mupad [B] (verification not implemented)

Time = 2.22 (sec) , antiderivative size = 176, normalized size of antiderivative = 3.52 \[ \int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {2}{b\,d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )}+\frac {\ln \left (-\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}}{b}-\frac {2\,\left (a\,d+b\,d+a\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}-b\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{\sqrt {-a}\,b^{3/2}\,d}\right )\,\left (a+b\right )}{2\,\sqrt {-a}\,b^{3/2}\,d}-\frac {\ln \left (\frac {2\,\left (a\,d+b\,d+a\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}-b\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{\sqrt {-a}\,b^{3/2}\,d}-\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}}{b}\right )\,\left (a+b\right )}{2\,\sqrt {-a}\,b^{3/2}\,d} \]

input
int(1/(cosh(c + d*x)^4*(a + b*tanh(c + d*x)^2)),x)
 
output
2/(b*d*(exp(2*c + 2*d*x) + 1)) + (log(- (4*exp(2*c + 2*d*x))/b - (2*(a*d + 
 b*d + a*d*exp(2*c + 2*d*x) - b*d*exp(2*c + 2*d*x)))/((-a)^(1/2)*b^(3/2)*d 
))*(a + b))/(2*(-a)^(1/2)*b^(3/2)*d) - (log((2*(a*d + b*d + a*d*exp(2*c + 
2*d*x) - b*d*exp(2*c + 2*d*x)))/((-a)^(1/2)*b^(3/2)*d) - (4*exp(2*c + 2*d* 
x))/b)*(a + b))/(2*(-a)^(1/2)*b^(3/2)*d)